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Abstract Pressure-driven viscous flow through a rigid curved pipe of uniform circular cross-section which is
suddenly stopped, for example through the instantaneous closure of a valve, is considered here. The profile of
the flow at early times after the stoppage is analysed asymptotically, by matching diffusive boundary layers to a
core flow that is driven by an axial pressure gradient. This pressure gradient is unknown a priori and, furthermore,
exhibits singular behaviour immediately after the stoppage. This analysis therefore provides the flow information
at small but finite times that is required for numerical determination of the flow at later times. The limiting case
of weak curvature is also considered, where linearization of the governing flow equations is possible. The results
illustrate some novel features of the flow which result solely from the pipe’s curvature and the consequences for
the flow’s rate of decay are discussed.

Keywords Blood flow · Curved-pipe flow · Transient flow

1 Introduction

The study of viscous flow through a curved pipe has relevance to a great number of different areas and, as such, has
been a subject of fluid-dynamical interest for many years. Physiological interests have been an especially strong
source of stimulation [1], as a proper understanding of blood flow within veins and arteries can provide useful
insights into clinical conditions such as atherosclerosis, which are believed to be a function of the shear stresses
exerted by the fluid on the vessel walls [2]. One of the earliest theoretical treatments of pressure-driven flow of a vis-
cous fluid through a curved pipe was given in [3], where a series solution was constructed for the time-independent
flow through a weakly curved pipe that is driven by a moderate pressure gradient. (A weakly curved pipe is one
where the radius of curvature R, i.e., the radius of the circle that contains the arc defining the pipe’s centreline, is
much smaller than the radius of the pipe’s cross-section a; see Fig. 1. It will prove useful to define a dimensionless
curvature parameter δ ≡ a/R.) An important feature of curved-pipe flow is the centrifugally driven secondary
flow within the cross-section of the pipe, which understandably has consequences for the transport properties of
the flow [4]. Subsequent numerical investigations into the steady weak curvature limit have revealed the existence
of symmetry-breaking bifurcations in the flow profile when the axial pressure gradient is sufficiently high, which
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results in a multiplicity of steady states [5]. Allowing the pipe to have finite curvature, in order to model significantly
curved pipes such as the aorta, introduces Coriolis effects in addition to the centrifugal forces present in the weak
curvature limit, and this has been shown to have consequences for the structure of the flow and the shear stresses
exerted by the fluid on the pipe wall [6]. Further geometric generalisations include flow through a helix, where the
pipe has torsion as well as curvature [7], as well as flow through pipes with a time-dependent curvature [8].

Recognising that true arterial flow is driven by the heart in a time-dependent manner, flow in a weakly curved
pipe driven by an oscillatory pressure gradient was considered in [9]. The flow under these circumstances is more
complex, with steady-streaming effects driving flows in the pipe cross-section which act in an opposite direction to
the centrifugally driven secondary flows. The more general case of pulsatile flow (oscillatory flow about a non-zero
mean) in weakly curved pipes has been treated in [10] and through finite-curvature pipes in [11]. Pulsatile flow
itself is an idealisation of the typically intermittant flows in the aorta, where a pulse-like volumetric flow rate during
the systolic phase is followed by a diastolic period of zero volumetric flow rate. For a straight pipe, the extreme
case where a constant flow rate is instantly reduced to zero has been treated in [12], where analytic progress was
made in describing the ensuing post-stoppage flow. Despite the idealised nature of this flow, it has been shown to
exhibit some of the important features observable in recent full numerical simulations [13], which used a pulse-like
flow-rate waveform. For example, observations of points of inflection in the streamwise velocity profiles due to
reversal of the flow near the wall, which are often the markers for flow instability, as illustrated by classical stability
analysis [14]. Such analysis, however, requires a sufficiently high Reynolds number for separation of timescales
between the base flow and the perturbations, but not so high as to eradicate viscous effects. With the aim of relaxing
these conflicting requirements on the Reynolds number, and acknowledging the importance of transient effects [15],
the stability of suddenly stopped straight-pipe flow was recently re-analysed using an explicit-transient analysis of
the time-dependent decaying flow [16], which revealed significant differences in the critical Reynolds numbers for
transition to turbulence from that predicted using classical stability theory.

The straight-pipe limit, however, is not able to reproduce all of the interesting and potentially important flow
phenomena observed in the numerical experiments [13]. By extending the suddenly stopped analysis to curved
pipes, we hope to give quantitative insight into some of the laminar features that are attributable to curvature effects,
as well as to lay the groundwork for subsequent stability analysis.

Suddenly stopped flow in a pipe is also of great industrial importance, with a traditional area of interest being
the study of the generated pressure waves and their well-documented ability to cause pipe damage (e.g. the water-
hammer effect). Some modern innovations, such as novel methods for detecting leaks in pipelines [17], are now
demanding a better understanding of viscous flow effects within suddenly stopped pipe flow. These considerations
may also be relevant when determining how sudden stoppages can lead to fluid contamination via leakage through
joints or cracks, or perhaps the stripping and mixing of a biofilm through strongly induced shear stresses on the
pipe wall [18].

In Sect. 2 we introduce the governing equations, and then go on to complete the specification of the initial condi-
tions for the post-stoppage flow by asymptotically analysing their small-time behaviour in Sect. 3. This is followed
in Sect. 4 by consideration of the weak-curvature limit. Evolution of the flow at later times must be determined
numerically and the computational scheme for achieving this is laid out in Sect. 5. Results are presented in Sect. 6
with conclusions and implications then discussed in Sect. 7.

2 Formulation

We consider a pipe with constant cross-sectional radius a and constant radius of curvature R, filled with an incom-
pressible fluid of density ρ and viscosity ν. We use a curvilinear coordinate system (r∗, θ, φ), defined by

x∗ = (r∗ cos θ + R) sin φ, y∗ = (r∗ cos θ + R) cosφ, z∗ = r∗ sin θ

(note that an asterisk denotes a dimensional variable) with respect to Cartesian coordinates (x∗, y∗, z∗). A sketch
of the geometry is laid out in Fig. 1. The flow u∗ = (u∗, v∗, w∗) therefore consists of radial, azimuthal and axial
components, respectively.
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Fig. 1 Flow in a curved
pipe of uniform
cross-sectional radius a is
described using a
(dimensionless) curvilinear
coodinate system (ar, θ, φ).
The pipe is assumed to have
a constant radius of
curvature R

θ
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êθ
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êφ
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ŷ
ẑ
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The blockage occurs instantly at time t∗ = 0 and we consider the flow at a suitably large distance from the source
of the blockage such that we may assume the flow is fully developed (i.e., φ-independent). For a straight pipe, the
flow typically becomes fully developed at O(aRe) distances from the pipe entrance (where Re is a Reynolds number
Wea/ν based on a typical flow velocity We at the pipe entrance). For a curved pipe, however, the lengthscale over
which steady flow develops (the entry length) depends upon the strength of centrifugal effects, as measured by the
quantity δ1/2G0, where G0 is a characteristic axial pressure gradient through the pipe. When centrifugal effects are
large, the entry length reduces from an O(aRe) distance (i.e., as in a straight pipe) to an O(Re1/2δ−1/4) distance,
due to the improved transport of vorticity and momentum across the pipe via secondary flows. An overview of entry
flow in curved pipes is given in [1].

As for the straight-pipe flow considered in [12], we expect viscous diffusion to dominate the evolution of the
post-stoppage flows. We therefore scale radial distance on a, flow velocities on ν/a, pressure on ν2ρ/a2, time on
a2/ν. The non-dimensional momentum equations for the flow then take the following form [19, p. 162]:

∂t u + u∂r u + v∂θu

r
− v2

r
− δ cos θw2

h
= −∂r p − 1

rh
∂θ

[
h

(
∂rv + v

r
− ∂θu

r

)]
, (1a)

∂tv + u∂rv + v∂θv

r
+ uv

r
+ δ sin θw2

h
= −∂θ p

r
+ 1

h
∂r

[
h

(
∂rv + v

r
− ∂θu

r

)]
, (1b)

∂tw + u∂rw + v∂θw

r
+ δ cos θuw

h
− δ sin θvw

h
= G(t)

h
+ L2w, (1c)

where h = 1+δr cos θ , −G(t) is the time-dependent axial pressure gradient scaled on ρν2/a3 (necessarily spatially
independent through the fully developed assumption) and

L2 = ∂2
rr +

(
1

rh
+ 2δ cos θ

h

)
∂r + 1

r2 ∂
2
θθ − δ sin θ∂θ

hr
− δ2

h2 . (1d)

These are supplemented by the continuity equation

∂r u + u(1 + 2δr cos θ)

rh
+ ∂θv

r
− vδ sin θ

h
= 0. (1e)

We are required to solve (1) subject to the boundary conditions

u(1, θ, t > 0) = 0, v(1, θ, t > 0) = 0, w(1, θ, t > 0) = 0. (2)

The fully developed nature of the flow, however, allows us to simplify the flow equations by introducing a stream
function ψ(r, θ, t) which satisfies

u = h−1r−1∂θ�, v = −h−1∂r�, � = hψ. (3)

We also eliminate cross-sectional pressure gradients by recasting (1a,b) into the form

∂tω + 1

r

(
∂rω∂θ�

h
− δ cos θω∂θ�

h2 − ∂r�∂θω

h
− δr sin θω∂r�

h2

)

−2δw sin θ∂rw

h
− 2δw cos θ∂θw

hr
= L2ω, ω = L2ψ, (4)
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where ω = −ξ is the negative of the axial component of vorticity ξ . Under the fully developed flow assumption, use
of the stream function ensures conservation of mass automatically. The boundary conditions (2a,b) are converted
into the following stream function form:

ψ(1, θ, t > 0) = ∂rψ(1, θ, t > 0) = 0. (5)

In addition, the blockage imposes a zero flux condition through the pipe

Q(t > 0) =
∫ 2π

0

∫ 1

0
rw(r, θ, t)drdθ = 0, (6)

and the pressure gradient G(t) is chosen to enforce this no-flux condition and hence must be determined at the same
time as the flow.

Just as for a straight pipe [12], the new boundary condition at the source of the blockage is enforced through
the propagation of a pressure wave through the pipe. On the diffusive timescale this results in unphysical jumps in
certain flow quantities, such as the flux and the axial pressure gradient. These jumps, however, are smoothed out
on a much shorter O(a/c) timeframe (with c the velocity of sound in the fluid) close to the instant that the pipe
becomes blocked. We determine whether there is any possible jump in the vorticity on the diffusive timescale by
analysing the Navier–Stokes vorticity equation over this short timescale

∂ω

∂t
− M∇ × (u × ω) = − M

Re
∇ × ∇ × ω, (7)

where M = Uc/c and Re = Uca/ν (where Uc is a typical centreline velocity for the flow). We see that when
pre-stoppage flow velocities are sufficiently slower than the speed of sound (M � 1)

∂ω

∂t
= 0, (8)

the vorticity distribution is unchanged during the passage of the pressure wave. Hence there is no jump in the vortic-
ity on the diffusive timescale and so it takes the pre-stoppage value, i.e., the flow initially adjusts in an irrotational
manner to the presence of the blockage. The flow profile immediately after the blockage therefore satisfies

∇ × u|t=0 = ω−,
where ω− is the pre-blockage vorticity distribution, i.e., the initial vorticity of the post-stoppage flow is equal to
the vorticity of the pre-stoppage flow, but now the flow is subject to a condition of zero net flow through the pipe.
In this paper we consider the pre-stoppage flow to be fully developed incompressible steady flow uD in a finitely
curved pipe, driven by a time-independent axial pressure gradient. The structure of these pre-stoppage flows has
recently been analysed in some detail [6].

Let us write the initial velocity as a correction ū to the pre-stoppage fully developed flow uD(r, θ)

u|t=0 = uD|t=0 + ū,

so that

ω+ = ∇ × u|t=0 = ω− + ∇ × ū,

where ω+ is the initial post-blockage vorticity distribution. Since ω− = ω+ we must have ∇ × ū = 0. As the flow
domain is simply connected, there exists a single-valued flow potential Φ̄ such that ū = ∇Φ̄. Conservation of mass
implies ∇ · ū = 0 (since the pre-stoppage flow uD is divergence-free), hence

∇2Φ̄ = 0. (9)

Now from the fully developed assumption, Φ̄ must have the form

Φ̄ = −αφ + f̄ (r, θ),

where α is a constant that will be determined through the no-flux condition and f̄ is an as yet unknown function.
However, on substitution in (9) we have

∇2 f̄ = 0. (10)
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Now consider a region of the flow bounded by the pipe wall and two arbitrary cross-sectional planes, at φ = φ2 and
φ = φ1 (φ2 > φ1). At the pipe wall and the two cross-sectional planes the derivatives of f̄ in directions normal to
the surface are zero, through the no-penetration condition at r = 1 and through the form for Φ̄, as given by (10), at
φ = φ1 and φ2. Hence, within the volume

f̄ (r, θ) = 0

(up to an irrelevant constant). Since the choice of φ1 and φ2 was arbitrary, f̄ (r, θ) is zero everyehere. We are
therefore left with the following initial conditions on the flow velocity

u(r, θ, 0) = uD(r, θ), v(r, θ, 0) = vD(r, θ), w(r, θ, 0) = wD(r, θ)− αh−1, (11)

recalling that uD is the fully developed steady pre-stoppage flow satisfying (1) driven by a constant axial pressure
gradient G(t) = D, e.g. P(r, θ, φ) = Dφ + pD(r, θ).

In stream function form, the initial condition for the cross-sectional flow becomes

ψ(r, θ, 0) = ψD(r, θ), (12)

whereψD is the stream function for the cross-sectional components of uD(r, θ). Note that to satisfy no-flux at t = 0,

α = δ2 QD

2π(1 − √
1 − δ2)

,

where Q D is the pre-stoppage flow’s flux which, in general, must be computed numerically. For later analysis it
proves useful to note that α → Q D/π = D/8 as δ → 0. In order to fully specify the problem we require initial
conditions for G(t), which must be determined through analysis of the small-time behaviour of the flow.

3 The small-time limit

In what follows we rescale time t = εT (ε � 1, T = O(1)) and, in anticipation of the similarity form for a vortex
sheet that forms on the pipe walls in response to the initial axial slippage (11), we expand both the velocity and
pressure in powers of ε1/2:

u = u(0) + ε1/2u(1) + εu(2) + · · · ,
p = ε−1G(0)(T )φ + ε−1/2G(1)(T )φ + (G(2)(T )φ + p(2)(r, θ))+ · · · .
We expect this vortex sheet to diffuse into the core over time, and so choose to decompose the flow into a core
contribution û, together with a diffusive boundary-layer flow ũ. Detailed calculations of the flows in these two
distinct asymptotic regions are given in Appendix A, which match together to form the following uniform-valid
expression for the post-stoppage flow at small times (up to O(ε3/2) corrections)

u = uD + t

[
−∂r P̂(2) − 2αδ cos θwD

h2 + α2δ cos θ

h3

]
, (13a)

v = vD + t

[
−1

r
∂θ P̂(2) + 2αδ sin θwD

h2 − α2δ sin θ

h3 + K (r, θ)+ α2δ sin θ

h3
1

]
, (13b)

w =
[
wD − α

h
+ α

h1
erfcη

]
+ t1/2

[
2Ḡ(1)

h
+ 2Ḡ(1)

h1

(√
πη erfcη − e−η2

)
+ α

(1 + 2δ cos θ)

h2
1

η erfcη

]

+ t

[
G(2)

h
− D

h
−

(
G(2)

h1
− D

h1

) (
(1 + 2η2)erfcη − 2ηe−η2

√
π

)

+ f2(θ)ηe−η2 +
(

A1(r, θ)− 2αδ2 cos2 θ

h3
1

) (
2ηe−η2

√
π

− 2η2erfcη

)]
, (13c)
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where functions K , f2 and A1 are given by (35), (32) and (34a), respectively; G(1) = T −1/2Ḡ(1), h1 = 1 + δ cos θ
and P̂(2) ensures conservation of mass (23c,d).

The unknown axial pressure gradients Ḡ(1) and G(2) are now determined through enforcement of the no-flux
condition. The leading-order boundary-layer flow ũ(0) produces the following flux through the pipe’s cross-section
(correct up to exponentially small terms in ε)

Q(0) =
∫ 2π

0

∫ 1

0
w(0) rdrdθ = ε1/2 Q(00) + εQ(01), (14a)

where

Q(00) = 4α
√
πT 1/2

√
1 − δ2

, Q(01) = − 2απT√
1 − δ2

. (14b)

Requiring that the O(ε1/2) core flow û
(1) cancels the O(ε1/2) flux Q(00) from ũ(0)∫ 2π

0

∫ 1

0
ŵ(1)rdrdθ =

∫ 2π

0

∫ 1

0

2Ḡ(1)T 1/2

h
rdrdθ = −Q(00),

gives us the leading-order pressure gradient

Ḡ(1) = αδ2

√
π(

√
1 − δ2 − 1)

√
1 − δ2

→ −D/(4
√
π) as δ → 0,

in agreement with the straight-pipe results [16]. The flux generated by the O(ε1/2) boundary-layer flow ũ(1) (correct
up to O(ε3/2)) is given by

Q(1) =
∫ 2π

0

∫ 1

0
w̃(1) rdrdθ = εT

(
−2π3/2Ḡ(1)

√
1 − δ2

+ απ
(1 − 2δ2)

(1 − δ2)3/2

)
, (15)

such that Q(1) → 5Dπ/8 as δ → 0. The O(ε) core flow û
(2) must be chosen such that the resulting flow cancels

out the flux Q(01) in (14) induced by the leading-order boundary-layer flow ũ(0), plus the above computed flux Q(1)

induced by the second-order boundary-layer flow∫ 2π

0

∫ 1

0
ŵ(2) rdrdθ = T

∫ 2π

0

∫ 1

0

G(2)

h
rdrdθ + Q(21) = −Q(01) − Q(1),

where

Q(21) = −T
∫ 2π

0

∫ 1

0

D

h
rdrdθ = −2πT D(1 − √

1 − δ2)

δ2 → −πT D as δ → 0.

The appropriate pressure gradient is therefore

G(2) = δ2(Q(01) + Q(1) + Q(21))

2π(
√

1 − δ2 − 1)
,

which approaches 5D/8 as δ → 0, once more in agreement with the straight-pipe results [16]. The agreement of
the small-time asymptotics against full numerical solutions is assessed in Sect. 6.

4 The small-curvature limit (δ � 1)

In general, for finite curvature, we must compute the initial condition wD − αh−1 numerically, which limits the
extent to which we can express the small-time approximation of Sect. 3 in closed form. When the pipe is only
weakly curved, however, we can exploit previously derived asymptotic approximations to uD , which can be used
in conjunction with small-curvature asymptotic analysis to describe the weakly curved pipe flow at all times after
the stoppage. Therefore, in the small-curvature limit, we seek an expansion of the form:

u = u0 + δu1 + · · · , G = (G0φ + p0)+ δ(G1φ + p1)+ · · · ·
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The O(1) flow is then governed by

∂t u0 + u0∂r u0 + v0∂θu0

r
− v2

0

r
= −∂r p0 − 1

r
∂θ

(
∂rv0 + v0

r
− ∂θu0

r

)
, (16a)

∂tv0 + u0∂rv0 + v0∂θv0

r
+ u0v0

r
= −∂θ p0

r
+ ∂r

(
∂rv0 + v0

r
− ∂θu0

r

)
, (16b)

∂tw0 + u0∂rw0 + v0∂θw0

r
= G0(t)+ 1

r

(
∂2
θ w0

r
+ ∂r (r∂rw0)

)
, (16c)

∂r u0 + u0

r
+ ∂θv0

r
= 0, (16d)

subject to [6]

u0(1, θ, t > 0) = 0, u0(r, θ, 0) = v0(r, θ, 0) = 0, w0(r, θ, 0) = 1

4
D(1 − r2), (16e)

which is the straight-pipe problem considered in [12]. The decay of the O(δ) flow, in axial velocity–stream-function
form, is governed by

∂tw1 − ∇2
pw1 = G1(t)− r cos θG0(t)− u1∂rw0 − sin θ

r
∂θw0 + cos θ∂rw0, (17a)

∂t∇2
pψ1 − ∇4

pψ1 = sin θ∂r

(
w2

0

)
, (17b)

(where ∇2
p ≡ 1

r ∂r (r∂r ) + 1
r2 ∂

2
θ is the two-dimensional Laplacian in polar coordinates). We are required to solve

(17) subject to the no-flux constraint (6) and

ψ1(1, θ, t > 0) = ∂rψ1(1, θ, t > 0) = w1(1, θ, t > 0) = 0, (18a)

ψ1(r, θ, 0) = 2D2c−1
1 r(1 − r2)2(4 − r2) sin θ, (18b)

w1(r, θ, 0) =
(

− 3

16
r(1 − r2)+ 1

c2
(r − r3)(19 − 21r2 + 9r4 − r6)

)
D cos θ, (18c)

[6] where c1 = 210 × 9, c2 = 215 × 45. Although, in general, (16)–(18) must be solved numerically (again using
the small-time analysis of Sect. 3 for initial conditions), the ADI scheme used to solve these linear equations is
significantly simpler than the full nonlinear computational scheme described in Sect. 5. The agreement between the
weakly curved computations and full numerical solutions is demonstrated in Sect. 6.

5 Numerical approach

At finite times we must rely on computational methods to determine the flow. The axial velocity must be evolved
using (1c), enforcing conditions (2c, 11c). The axial vorticity must be evolved in accordance with (4a), where the
boundary and initial conditions for ω are computed via (5), (12) and (4b), using ψ from the previous timestep. The
stream function for the current timestep is then calculated by inverting (4b) whilst satisfying boundary conditions
(5). G(t) at the next timestep is determined by enforcing the no-flux condition (6). We discretize our domain into
an N × N uniform grid, approximate spatial derivatives using finite differences and timestep using an ADI scheme.
Results were obtained using N = 100 and a timestep of dt = 10−3, with numerical convergence verified using
N = 200 and dt = 10−3/2. Explicit evaluation of the nonlinear terms in the evolution equations, together with
the discretized no-flux condition (6), generates a linear system, which we can solve by Gaussian elimination to
determine simultaneously, at the next timestep, the axial velocity, axial vorticity, cross-sectional stream function
and pressure gradient. The initial condition for the axial pressure gradient is given by the small-time asymptotics
developed in Sect. 3, where we chose to timestep from t = 10−3 to avoid the singularity at t = 0.
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Fig. 2 Suddenly stopped flow in a pipe of curvature δ = 0.5, when the pre-stoppage is driven by an axial pressure gradient of
strength D = − 4. The full profiles for axial flow w and axial vorticity ξ are shown in panels (a) and (b), respectively, at time
t = 0.004. Lighter shading indicates positive quantities, while darker shading corresponds to negative quantities. Panels (c) and (d)
plot the numerically computed profile (full line) of w and ξ across the lines θ = −π, 0 and θ = −π/2, π/2, respectively, at times
t = 0.004, 0.006, 0.01, 0.02 and 0.004, 0.006, 0.01 (with decreasing magnitude), respectively, alongside the corresponding predictions
from the small-time asymptotics (13) (dashed lines). Inner (θ = π) and outer pipe (θ = 0) walls are labelled by I and O, respectively

6 Results

We have asserted that understanding the early behaviour of the post-stoppage flow is vital for computing the evo-
lution of the flow at later times; Fig. 2 therefore gauges the effectiveness of the small-time asymptotics derived in
Sect. 3. Profiles of the numerically evaluated axial velocity w and axial component of vorticity ξ for flow through a
pipe with curvature δ = 0.5 when D = −4 (taken along the lines θ = (−π, 0) and θ = (−π/2, π/2), respectively),
at numerous early times, show the numerical predictions (full lines) to be in good agreement with the asymptotic
theory (dashed lines).

For comparison, in Fig. 3 we present the axial velocity profiles for a straight pipe (δ = 0) against one with a
high degree of curvature (δ = 0.8). This serves to illustrate the extent to which axi-symmetry in the straight-pipe
flow is broken as the pipe becomes curved. We should note, however, that it is by no means clear that the flow
will remain fully developed when there is such extreme curvature, so the results relating to such large values of δ
should be treated with a degree of caution. Moreover, in the straight-pipe limit (Fig. 3a) we are able to confirm our
predictions with those in [16], whilst at large curvature (Fig. 3b) we verify the continued validity of the asymptotic
approximations in the small-time limit.

The dramatic influence of curvature at large values of D is revealed in Fig. 4. Flow driven by a high pressure
gradient develops thin (O(δ−1/6 D−1/3)) boundary layers on the pipe wall [6], which collide to form an ejection of
fluid from the boundary layer at the circumference on the inner wall soon after the flux is reduced to zero. This jet
of reversed flow then proceeds to propogate across the core of the pipe. (Importantly, a similar phenomenon was
noted in a physiologically relevant intermittant-flow study [13], where a pulse-like flow rate is followed by a period
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Fig. 3 Profiles of axial floww taken across the line of horizontal symmetry (θ = −π, 0) for (a) a straight pipe (δ = 0) and (b) a highly
curved pipe (δ = 0.8), both with pre-stoppage axial pressure gradient D = −4. In (a) we compare our numerical predictions (circles)
with [16] (full line) at times t = 0.001, 0.002, 0.004, 0.006, 0.01, 0.02, 0.04, 0.06, 0.1, 0.15 and 0.2 (top to bottom). For a pipe of
finite curvature (b), we compare numerically computed axial flows (full lines) and small-time asymptotics (13) (dashed lines) at time
intervals t = 0.004, 0.006, 0.01, 0.02 (top to bottom). Inner (θ = π) and outer (θ = 0) pipe walls are labelled by I and O, respectively

(a)

I

(b)

I O

(c) (d)

O

I O I O

Fig. 4 Axial flow w through the pipe cross-section when δ = 0.5 and D = −5,000, taken at time (a) t = 10−3, (b) t = 1.5 × 10−2,
(c) t = 2.5 × 10−2 and (d) t = 5.5 × 10−2, showing ejection of fluid into the core of the pipe due to colliding boundary layers. Inner
(θ = π) and outer (θ = 0) pipe walls are labelled by I and O, respectively. Lighter shading indicates positive axial velocities, while
darker shading corresponds to negative quantities. Lines correspond to the w = 0 contour

of zero flux.) This large-D effect is compared with the more sedate development of the post-stoppage flow at lower
values of D, as shown in Fig. 5.

The consequences of this effect on the life-span of the post-stoppage flow are explored in Fig. 6, where δ is
plotted against the time until the maximum axial flow is 1% of its initial, post-stoppage maximum. Decay profiles
corresponding to flows with a relatively low value of D are shown in Fig. 6a, to be compared with the large-D case
presented in Fig. 6b. In both cases we note the decrease in decay time as the curvature of the pipe is increased,
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(a) (b)

(c) (d)

I I

I IO O

OO

Fig. 5 Axial flow w through the pipe cross-section when δ = 0.5 and D = −4, taken at time (a) t = 10−3, (b) t = 1.5 × 10−2, (c)
t = 2.5 × 10−2 and (d) t = 5.5 × 10−2. Inner (θ = π) and outer (θ = 0) pipe walls are labelled by I and O, respectively. Lighter
shading indicates positive axial velocities, while darker shading corresponds to negative quantities. Lines correspond to the w = 0
contour
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Fig. 6 Plots of δ against the time td until the maximum of the post-stoppage axial flow has decayed to 1% of its initial maximum value,
for pre-stoppage axial pressure gradients (a) D = −4 and (b) D = −5,000

which is expected due to the fact that greater curvature results in stronger secondary flows (normalised on their
respective axial flows) which, in turn, are more effective at transporting reversed flow from near the walls into
the pipe’s core. Increases in the relative strength of centrifugally driven flows at large values of D, together with the
secondary flows that result from the previously described ejection of fluid from boundary layers that form in the
high-D regime, are both likely explanations for the overall reduction in decay times at D = −5,000 over those
observed when D = −4.

Finally, as laid out in Sect. 4, in the weak-curvature limit the governing equations can be linearized and Fig. 7
compares the predictions of this weak curvature limit with full numerical computations (when δ = 0.1 and D = −4).
Here we see the need for inclusion of the leading-order curvature correctionw1 (dashed line) to capture the non-axi-
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Fig. 7 Profiles of axial flow
w taken across the line of
horizontal symmetry
(θ = −π, 0) when δ = 0.1
and D = −4 at times
t = 0.004, 0.006,
0.01, 0.02, 0.04, 0.06,
0.1, 0.2 (top to bottom),
together with the
straight-pipe axial profile
w0 (dotted line) and the
leading-order
curvature-corrected flow
w0 + δw1 (dashed line)
against the full numerical
solution (solid line). Inner
(θ = π) and outer (θ = 0)
pipe walls are labelled by I
and O, respectively
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symmetric character of the decaying axial flow profile, where agreement is observed to be best away from the pipe
walls. Furthermore, the overall accuracy of this weak curvature correction appears to be maintained throughout the
duration of the flow’s post-stoppage decay.

7 Discussion and conclusions

We have examined the decay of initially steady, pressure-driven viscous flow in a finitely curved rigid pipe of
uniform cross-section, following the instantaneous imposition of a no-flux condition designed to simulate a sudden
blockage of the flow. At sufficiently large distances from the blockage we assume that the flow is fully developed
(i.e., does not vary with the axial location). As in the straight-pipe case [12], the axial pressure gradient was an
unknown quantity which had to be solved as part of the problem. Initial conditions for the post-stoppage velocity
were deduced using the fact that flow vorticity is initially unaffected by the stoppage. Initial conditions for the axial
pressure gradient, by contrast, had to be determined through asymptotic analysis of the small-time behaviour of
the decaying flow. Equipped with these initial conditions, we solved the flow using an ADI numerical scheme, the
results of which were seen to be in good agreement with the asymptotic predictions in the small-time limit. For the
case where the pipe was only weakly curved (δ � 1), we expanded flow quantities in powers of δ, which lead to a
simplified set of linear flow equations and permitted us to use closed-form expressions for the initial flow profile.

The effects of curvature were clearly visible in the non-axisymmetric axial flow profiles, as well as the generation
of flows within the pipe’s cross-section. Asymptotic analysis showed that the secondary flows decay like O(t) at
small times, compared with the more rapid O(t1/2) small-time decay of the axial flow.

At high values for the pre-stoppage pressure gradients (D = −5,000, i.e., representative of blood flow in the
human aorta [20]), the influence of pipe curvature was even more pronounced. Once the flow was stopped we
observed the propogation of a jet of ejection boundary-layer fluid across the pipe’s core (Fig. 4). This effect, also
observable in the simulations of aortic blood flow for a less sudden shut-off of the flow rate [13], results from collision
of centrifugally driven flows within the boundary layers, which are of thickness O(δ−1/6 D−1/3) on the pipe wall,
and hence is a product of the pipe’s curvature. The finite-time singularity in the unsteady boundary-layer equations
which corresponds to this type of boundary-layer collision have recently been characterized mathematically [21],
however a mathematical description for the structure of the flow beyond the singularity remains an open problem.
(It is also natural to expect that such dramatic jet structures will have important consequences for the stability of
the flow beyond the straight-pipe analysis in [14].) The impact of curvature effects upon the rate of decay was
clearly illustrated in Fig. 6, with flow through more highly curved pipes decaying more rapidly, presumably due to
the associated enhancement of secondary flows and accompanying improvement of the flow’s transport properties.
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This trend was seen to be more pronounced as D was increased, where centrifugally driven secondary flows are
augmented by the aforementioned ejection of fluid from the colliding boundary layers.

Acknowledgements This work was supported by Australian Research Council grant DP0556360. We are grateful to Jonathan Mestel
for his comments on the original manuscript.

Appendix A: Small-time flow structure

We here give details of the flows in the core of the pipe and within diffusive boundary layers on the pipe wall, which
match together to form the uniformly valid expansion given by (13) in Sect. 3.

A.1 Core flow

From (1), the O(1) core velocity û
(0) satisfies

∂T û(0) = ∂T v̂
(0) = 0, ∂T ŵ

(0) = G(0)(T )

h
.

Noting that the O(1) flux is proportional to the integral of G(0) over time, Q(T ) ∝ ∫ T
0 G(0)(T ′)dT ′ + O(ε1/2), the

zero-flux condition therefore requires

G(0)(T ) = 0. (19a)

The initial conditions (11) now give

û(0)(r, θ, T ) = uD(r, θ), v̂(0)(r, θ, T ) = vD(r, θ),

ŵ(0)(r, θ, T ) = wD(r, θ)− αh−1.

(19b)

However, these solutions generate an axial slip velocity ŵ(0) = −αh−1
1 at the wall (r = 1), where h1 = 1+ δ cos θ .

This is reconciled with the no-slip condition via a boundary-layer flow ũ(0), considered in Sect. A.2, which forms
on the pipe wall immediately after the flow’s stoppage. The boundary-layer flow ũ(0) generates an O(ε1/2) flux,
denoted Q(00) (see (14)), however, which drives an O(ε1/2) core flow û

(1).
We therefore seek a first-order correction to the core flow with the form

û
(1)
(r, θ, T ) = T 1/2Û

(1)
(r, θ)

which, as we shall see in Sect. A.2, exhibits the required time dependence to cancel the flux due to ũ(0). From (1c),
the O(ε1/2) flow is driven by an O(ε−1/2) axial pressure gradient with the form

G(1)(T ) = T −1/2Ḡ(1).

This leads to

∂T Û (1) = ∂T V̂ (1) = 0, ∂T

(
T 1/2Ŵ (1)

)
= h−1T −1/2Ḡ(1), (20)

hence

Û (1) = V̂ (1) = 0, Ŵ (1) = 2h−1Ḡ(1). (21)

The exact form of Ḡ(1) must be computed such that no-flux is enforced at O(ε1/2) (see Sect. 3). The axial flow
Ŵ (1) generates a slip velocity 2T 1/2h−1

1 Ḡ(1) at the wall, which is adjusted to zero by the O(ε1/2) correction ũ(1)

to the boundary-layer flow. This boundary-layer flow ũ(1), in turn, generates an O(ε) flux which must be corrected
by an O(ε) core flow.
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Prescribing the time dependence

û
(2)
(r, θ, T ) = T Û

(2)
(r, θ) (22)

(which also implies that G(2) is time-independent), we obtain

Û (2) = −uD∂r uD − vD∂θuD

r
+ v2D

r
+ δ cos θ

(
ŵ(0)

)2

h
− ∂r p̂(2)

− 1

rh
∂θ

[
h

(
∂rvD + vD

r
− ∂θuD

r

)]
= −∂r P̂(2) − δ cos θ

h2

(
2αwD − α2

h

)
, (23a)

V̂ (2) = −uD∂rvD − vD∂θvD

r
− uDvD

r
− δ sin θ

(
ŵ(0)

)2

h
− ∂θ p̂(2)

r

+ 1

h
∂r

[
h

(
∂rvD + vD

r
− ∂θuD

r

)]
= −∂θ P̂(2)

r
+ δ sin θ

h2

(
2αwD − α2

h

)
, (23b)

using the governing equations for the pre-stoppage flow with

p̂(2) = pD + P̂(2),

where pD is the cross-sectional pressure for the pre-stoppage flow and P̂(2) is chosen to enforce conservation of
mass

∇2 P̂(2) ≡ 1

rh

(
∂r

(
rh∂r P̂(2)

)
+ ∂θ

(
h

r
∂θ P̂(2)

))
= δ2

h3 H(r, θ)+ δ

h2

(
sin θ

r
∂θ H(r, θ)− cos θ∂r H(r, θ)

)
,

(23c)

where

H(r, θ) =
(

2αwD − α2

h

)
,

subject to

∂r P̂(2))(1, θ) = −δ cos θ

h2
1

(
2αwD(1, θ)− α2

h1

)
= α2δ cos θ

h3
1

(23d)

(from the no-penetration condition Û (2)(1, θ) = 0). This, in turn, implies that the O(ε) axial component of flow
vorticity in the core of the pipe takes the form

ξ̂ (2) = 2αδT

h2

(
sin θ∂rwD + cos θ

r
∂θwD

)
.

In terms of the axial flow,

Ŵ (2) = −uD∂r ŵ
(0) − vD∂θ ŵ

(0)

r

−δ cos θuDŵ
(0)

h
+ δ sin θvDŵ

(0)

h
+ G(2)

h
+ L2ŵ(0) = G(2)

h
− D

h
, (23e)

(since L2(α/h) = 0 and so L2ŵ(0) = L2wD) where G(2) is computed such that no-flux is ensured at O(ε) (see
Sect. 3).

So from (19), (21) and (23) we obtain the outer flow (correct up to O(ε3/2))

û = uD + t

[
−∂r P̂(2) − 2αδ cos θwD

h2 + α2δ cos θ

h3

]
, (24a)

v̂ = vD + t

[
−1

r
∂θ P̂(2) + 2αδ sin θwD

h2 − α2δ sin θ

h3

]
, (24b)

ŵ =
(
wD − α

h

)
+ t1/2 2Ḡ(1)

h
+ t

[
G(2)

h
− D

h

]
, (24c)

ξ̂ = ξD + t

[
2αδ

h2

(
sin θ∂rwD + cos θ

r
∂θwD

)]
, (24d)
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(ξD = −L2ψD where �D = hψD). In terms of the boundary-layer variable

η = 1

2
t−1/2(1 − r),

the inner limit of the flow, correct up to O(ε3/2), is therefore

û → −2ηt1/2∂r uD(1, θ)+ 2η2t∂2
rr uD(1, θ) = 2η2t∂2

rr uD(1, θ), (25a)

v̂ → −2ηt1/2∂rvD(1, θ)+ t

[
−∂θ P̂(2) + 2η2∂2

rrvD(1, θ)− α2δ sin θ

h3
1

]
, (25b)

ŵ → − α

h1
+ t1/2

[
2Ḡ(1)

h1
− 2η∂rwD(1, θ)− 2αηδ cos θ

h2
1

]

+ t

[
G(2)

h1
− 4αη2δ2 cos2 θ

h3
1

+ 2η2∂2
rrwD(1, θ)− D

h1
+ 4δḠ(1)η cos θ

h2
1

]
, (25c)

where we have used the fact that ∂r uD(1, θ) = 0 from the continuity equation, and the inner limit of the pressure
(up to O(ε) corrections) is

p̂(2) →
(

pD(1, θ)+ P̂(2)(1, θ)
)

− 2ηt1/2
(
∂r pD(1, θ)+ ∂r P̂(1, θ)

)
. (25d)

We next discuss the boundary-layer flow that matches onto this core flow.

A.2 Boundary-layer flow

From (1), the leading-order boundary-layer flow ũ(0) satisfies

∂T ũ(0) − 1

2
T −1η∂ηũ(0) = 0, ∂T ṽ

(0) − 1

2
T −1η∂ηṽ

(0) − 1

4
T −1∂2

ηηṽ
(0) = 0,

∂T w̃
(0) − 1

2
T −1η ∂ηw̃

(0) = 1

4
T −1∂2

ηηw̃
(0), (26a)

subject to the matching condition (25)

ũ(0)(0, θ, t) = 0, ũ(0)(η, θ, t), ṽ(0)(η, θ, t) → 0, (26b)

w̃(0)(η, θ, t) → −αh−1
1 as η → ∞. (26c)

Hence (26) is solved by

ũ(0) = ṽ(0) = 0, w̃(0) = −αh−1
1 erf(η), (27)

where erf(η) is the Error Function. The boundary-layer flow ũ(1) at O(ε1/2) satisfies

∂T ũ(1) − 1

2
T −1η∂ηũ(1) = 1

2
T −1/2∂η p̃(2), (28a)

∂T ṽ
(1) − 1

2
T −1η∂ηṽ

(1) = 1

4
T −1∂2

ηηṽ
(1), (28b)

∂T w̃
(1) − 1

2
T −1η∂ηw̃

(1) − 1

2
T −1/2ũ(0)∂ηw̃

(0)

= T −1/2Ḡ(1)

h1
+ 1

4
T −1∂2

ηηw̃
(1) − 1

2
T −1/2

(
1 + 2δ cos θ

h1

)
∂ηw̃

(0). (28c)

Prescribing an explicit time-dependence which is consistent with the core flow,

ũ(1)(η, θ, T ) = T 1/2Ũ
(1)
(η, θ)
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and using the fact that ũ(0)(η, θ, T ) = 0, we obtain

∂2
ηηW̃ (1) + 2η∂ηW̃ (1) − 2W̃ (1) = −4Ḡ(1)

h1
+ 2

(
1 + 2δ cos θ

h1

)
∂ηw̃

(0)

= −4Ḡ(1)

h1
− 4α(1 + 2δ cos θ)e−η2

√
πh2

1

. (29)

We can solve (28a,b) and (29), subject to W̃ (1)(0, θ) = 0 and the matching condition (25), to yield

Ũ (1)(η, θ) = 0, Ṽ (1)(η, θ) = −2η∂rvD(1, θ), (30a)

W̃ (1)(η, θ) = 2Ḡ(1)

h1

(
1 − e−η2 + √

πη erfcη
)

+ α(1 + 2δ cos θ)

h2
1

η erfcη

−2η

(
∂rwD(1, θ)+ αδ cos θ

h2
1

)
, (30b)

∂η p̃(2) = 0 implying that p̃(2) = pD(1, θ)+ P̃(2)(1, θ), (30c)

where erfc(η) = 1 − erf(η) is the Complementary Error Function.
The O(ε) boundary-layer flow ũ(2), which is prescribed the time dependence

ũ(2)(r, θ, T ) = T Ũ
(2)
(r, θ),

satisfies

Ũ (2) − 1

2
η∂ηŨ

(2) = 1

2
∂η p̃(3) + 1

2t1/2 ∂θ∂ηṽ
(1) − δ sin θ

2h1t1/2 ∂ηv
(1) + δ cos θ

(
w(0)

)2

h1

= 1

2
∂η p̃(3) + ∂2

rr uD(1, θ)+ δ cos θ
(
w(0)

)2

h1
from the continuity equation

= 1

2
∂η P̃(3) − ∂r P̂(2)(1, θ)+ δ cos θ

(
w(0)

)2

h1
= 1

2
∂η P̃(3) + α2δ cos θ

(
(erfη)2 − 1

)
h3

1

where

p̃(3) = −2η
(
∂r pD(1, θ)+ ∂r P̂(2)(1, θ)

)
+ P̃(3).

However, conservation of mass demands that

∂ηŨ
(2) = 2

(
∂θ Ṽ (1) − δ sin θ Ṽ (1)

h1

)
= −4η

(
∂θ∂rvD(1, θ)− δ sin θ∂rvD(1, θ)

h1

)
= −4η∂2

rr uD(1, θ),

implying that

Ũ (2) = −2η2∂rr uD(1, θ) (31a)

(taking into consideration the no-penetration condition). Hence

Ũ (2) − 1

2
η∂ηŨ

(2) = 0

and

∂η P̃(3) = −2α2δ cos θ
(
(erfη)2 − 1

)
h3

1

.
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The two other flow velocity components satisfy

Ṽ (2) − 1

2
η∂η Ṽ (2) − 1

4
∂2
ηη Ṽ (2) = −∂θ p̃(2) − 1

2t1/2

(
1 + δ cos θ

h1

)
∂η Ṽ (1) − δ sin θ

(
w̃(0)

)2

h1

= −∂θ p̃(2) +
(

1 + δ cos θ

h1

)
∂rvD(1, θ)− α2δ sin θ (erfη)2

h3
1

= −∂θ P̂(2)(1, θ)− ∂θ pD(1, θ)+
(

1 + δ cos θ

h1

)
∂rvD(1, θ)− α2δ sin θ (erfη)2

h3
1

= −∂θ P̂(2)(1, θ)− ∂2
rrvD(1, θ)− α2δ sin θ (erfη)2

h3
1

(31b)

and

W̃ (2) − 1

2
η∂ηW̃ (2) − 1

4
∂ηηW̃ (2) = 2Ḡ(1)ηδ cos θ

h2
1

−
(

1 + 2δ cos θ

2h1

)
∂ηW̃ (1) −

(
1 + δ2 cos2 θ

h2
1

)
η∂ηw̃

(0)

+ ∂θθ w̃(0) − δ sin θ

h1
∂θ w̃

(0) − δ2

h2
1

w̃(0) + G(2)

h1

= 2Ḡ(1)ηδ cos θ

h2
1

+ G(2)

h1
+ 2 f2(θ)ηe−η2

−
(
α

2h3
1

(1 + 2δ cos θ)+ Ḡ(1)√π(1 + 2δ cos θ)

h2
1

)
erfcη

+
(

1 + 2δ cos θ

h1

)
∂rwD(1, θ)+ 2αδ2 cos2 θerfη

h3
1

, (31c)

where

f2(θ) = απ−1/2h−3
1

(
3

2
+ 4δ cos θ + 4δ2 cos2 θ

)
. (32)

The required axial flow which satisfies W̃ (2)(0) = 0 and (25) is given by

Ũ (2) = 2η2∂2
rr uD(1, θ), (33a)

Ṽ (2) = 2η2∂2
rrvD(1, θ)− ∂θ P̂(2)(1, θ)+ K (η, θ), (33b)

W̃ (2) = 4δḠ(1)η cos θ

h2
1

+ f2(θ)ηe−η2 − 2αδ2 cos2 θ

h3
1

(
2η2erfη + 2ηe−η2

√
π

)

+A1(r, θ)

(
2ηe−η2

√
π

− 2η2erfcη

)
+ A2(r, θ)

(
1 − (1 + 2η2)erfcη + 2ηe−η2

√
π

)

+∂2
rrwD(1, θ)

(
(1 + 2η2)erfη + 2ηe−η2

√
π

)

(33c)

where

A1(r, θ) = −
(
α

2h3
1

(1 + 2δ cos θ)+ Ḡ(1)√π(1 + 2δ cos θ)

h2
1

)
, (34a)

A2(r, θ) = +
(

G(2)

h1
+

(
1 + 2δ cos θ

h1

)
∂rwD(1, θ)

)
. (34b)
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K (η, θ) is a function, which must be found numerically, satisfying

K − 1

2
η∂ηK − 1

4
∂2
ηηK = −α

2δ sin θ(erfη)2

h3
1

, (35)

subject to

K (0, θ) = ∂θ P̂(2)(1, θ), K (η, θ) → −α
2δ sin θ

h3
1

as η → ∞.
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